

ARBITECH

SOLUTIONS

Arbitech Solutions

7 December, 2021

NIL ERC20 Token Smart

Contract Code Review and

Security Analysis Report

Contents
Commission .. 3

Disclaimer... 4

NIL Properties .. 5

Contract Functions ... 6

View .. 6

Executables .. 6

Owner Executables ... 6

Checklist ... 8

Owner privileges .. 9

NIL Contract ... 9

Quick Stats: .. 15

Executive Summary ... 16

Code Quality ... 16

Documentation ... 17

Use of Dependencies .. 17

Audit Findings ... 18

Critical .. 18

High .. 18

Medium .. 18

Low .. 18

Conclusion .. 19

Our Methodology .. 19

Disclaimers .. 20

Privacy Arbitech Solutions Disclaimer .. 20

Technical Disclaimer ... 20

Commission

Audited Project NIL Smart Contract

Contract Owner 0x51049066d8ce32D647c6e5E5a92E037040a7f70D

Smart Contract

Blockchain Ethereum Mainnet

Arbitech Solutions was commissioned by NIL ERC20 Token owners to perform an audit of their main smart

contract. The purpose of the audit was to achieve the following:

● Ensure that the smart contract functions as intended.

● Identify potential security issues with the smart contract.

The information in this report should be used to understand the risk exposure of the smart contract, and as a guide

to improve the security posture of the smart contract by remediating the issues that were identified.

0xD31B00deA80cF282aCE1791D204d76a85Fb82556

Disclaimer
This is a limited report on our finding based on our analysis, in accordance with good industry practice as at the

date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms based

on smart contracts, the details of which are set out in this report. In order to get a full view of our analysis, it is

crucial for you to read the full report. While we have done our best in conducting our analysis and producing this

report, it is important to note that you should not rely on this report and cannot claim against us on the basis of

what it says or doesn’t say, or how we produced it, and it is important for you to conduct your own independent

investigations before making any decisions. We go into more detail on this in the disclaimer below please make

sure to read it in full.

DISCLAIMER: By reading this report or any part of it, you agree to the terms of this disclaimer. If you do not

agree to the terms, then please immediately cease reading this report, and delete and destroy any and all copies

of this report downloaded and/or printed by you. This report is provided for information purposes only and on

a non-reliance basis, and does not constitute investment advice. No one shall have any right to rely on the report

or its contents, and Arbitech Solutions and its affiliates (including holding companies, shareholders,

subsidiaries, employees, directors, officers and other representatives) (Arbitech Solutions) owe no duty of care

towards you or any other person, nor does Arbitech Solutions make any warranty or representation to any person

on the accuracy or completeness of the report. The report is provided "as is", without any conditions, warranties

or other terms of any kind except as set out in this disclaimer, and Arbitech Solutions hereby excludes all

representations, warranties, conditions and other terms (including, without limitation, the warranties implied by

law of satisfactory quality, fitness for purpose and the use of reasonable care and skill) which, but for this clause,

might have effect in relation to the report. Except and only to the extent that it is prohibited by law, Arbitech

Solutions hereby excludes all liability and responsibility, and neither you nor any other person shall have any

claim against Arbitech Solutions, for any amount or kind of loss or damage that may result to you or any other

person (including without limitation, any direct, indirect, special, punitive, consequential or pure economic loss

or damages, or any loss of income, profits, goodwill, data, contracts, use of money, or business interruption,

and whether in delict, tort (including without limitation negligence), contract, breach of statutory duty,

misrepresentation (whether innocent or negligent) or otherwise under any claim of any nature whatsoever in

any jurisdiction) in any way arising from or connected with this report and the use, inability to use or the results

of use of this report, and any reliance on this report. The analysis of the security is purely based on the smart

contracts alone. No applications or operations were reviewed for security.

NIL Properties

Contract name NIL ERC20 Token

Contract address

Total supply 1000000000000

Token ticker NIL

Decimals 8

Token holders 3

Transaction’s count 24

Top 100 holder’s dominance 100%

UniswapV2Pair 0x38880bdf094473bd75225112b2d0e318e14c3c16

UniwapV2Router 0x7a250d5630b4cf539739df2c5dacb4c659f2488d

Contract deployer address 0x51049066d8ce32D647c6e5E5a92E037040a7f70D

Contract’s current owner

address

0x51049066d8ce32d647c6e5e5a92e037040a7f70d

0xD31B00deA80cF282aCE1791D204d76a85Fb82556

Contract Functions

View

i. function allowance(address owner, address spender) public view virtual override returns

(uint256)

ii. function balanceOf(address account) public view virtual override returns (uint256)

iii. function decimals() public view virtual returns (uint8)

iv. function geUnlockTime() public view returns (uint256)

v. function getBotWalletStatus(address botwallet) public view returns (bool)

vi. function isExcludedFromFees(address account) public view returns (bool)

vii. function isExcludedFromReward(address account) public view returns (bool)

viii. function name() public view virtual returns (string memory)

ix. function owner() public view virtual returns (address)

x. function symbol() public view virtual returns (string memory)

xi. function totalSupply() public view virtual override returns (uint256)

xii. function reflectionFromToken(uint256 tAmount, bool deductTransferFee)public view

returns (uint256)

xiii. function tokenFromReflection(uint256 rAmount) public view returns (uint256)

xiv. function totalFees() public view returns (uint256)

Executables

i. function approve(address spender, uint256 amount) public virtual override returns (bool)

ii. function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool)

iii. function deliver(uint256 tAmount) public

iv. function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool)

v. function processDividendTracker(uint256 gas) external

vi. function transfer(address recipient, uint256 amount) public virtual override returns (bool)

vii. function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns

(bool)

Owner Executables

i. function addBotWallet(address botwallet) external onlyOwner

ii. function airdrop(address recipient, uint256 amount) external onlyOwner

iii. function airdropArray(address[] calldata newholders, uint256[] calldata amounts) external

onlyOwner

iv. function allowtrading() external onlyOwner

v. function claimOtherTokens(IERC20 tokenAddress, address walletaddress)external

onlyOwner

vi. function claimTokens(address walletAddress) public onlyOwner

vii. function clearStuckBalance(address payable walletaddress)external onlyOwner

viii. function excludeFromReward(address account) public onlyOwner

ix. function excludeFromFee(address account) public onlyOwner

x. function excludeFromWhitelist(address account) external onlyOwner

xi. function includeInFee(address account) public onlyOwner

xii. function includeInReward(address account) external onlyOwner

xiii. function includeInWhitelist(address account) external onlyOwner

xiv. function lock(uint256 time) public virtual onlyOwner

xv. function removeBotWallet(address botwallet) external onlyOwner

xvi. function renounceOwnership() public virtual onlyOwner

xvii. function setBurnFeePercent(uint256 fee) public onlyOwner

xviii. function setLiquidityFeePercent(uint256 liquidityFee) external onlyOwner

xix. function setMaxTxAmount(uint256 maxTxAmount) external onlyOwner

xx. function setSwapAndLiquifyEnabled(bool _enabled) public onlyOwner

xxi. function setSwapThresholdAmount(uint256 SwapThresholdAmount) external onlyOwner

xxii. function setTaxFeePercent(uint256 taxFee) external onlyOwner

Checklist

Compiler errors. Passed

Possible delays in data delivery. Passed

Timestamp dependence. Low Severity

Integer Overflow and Underflow. Passed

Race Conditions and Reentrancy. Passed

DoS with Revert. Passed

DoS with Arbitech gas limit. Passed

Methods execution permissions. Passed

Economy model of the contract. Passed

Private user data leaks. Passed

Malicious Events Log. Passed

Scoping and Declarations. Passed

Uninitialized storage pointers. Passed

Arithmetic accuracy. Passed

Design Logic. Passed

Impact of the exchange rate. Passed

Oracle Calls. Passed

Cross-function race conditions. Passed

Fallback function security. Passed

Front Running. Passed

Safe Open Zeppelin contracts and implementation usage. Passed

Whitepaper-Website-Contract correlation. Not Checked

Owner privileges

NIL Contract

function will transfer token for a specified address. recipient is the address to transfer’ to. amount is the amount

to be transferred. Requirements: `recipient` cannot be the zero address. The caller must have a balance of at least

`amount`.

Owner can add any address to botwallet address.

Owner call this function to add “account”. “account” is excluded from free.

Transfer tokens from one address to another. “sender” is the address which you want to send tokens from.

“recipient” is the address which you want to transfer to. “amount” is the number of tokens to be transferred.

`sender` and `recipient` cannot be the zero address. `sender` must have a balance of at least `amount`. The caller

must have allowance for `sender’s ‘tokens of at least `amount`.

Owner add the “recipient” address and “amount” of tokens . the amount of tokens are transfer to this address.

Owner call this function to add “account” in whitelist.

Owner add the addresses in “newholder” array and passed the number of tokens in “amounts” array. Here is a

require statement where length of “newholder” and length of “amounts” must be same. Then number of tokens

are sent to the account which owner provides.

Gas Cost is increasing exponentially with each iteration of loop.

Owner can allow trading by enabling the cantrade .

Approve the passed address to spend the specified number of tokens on behalf of msg. sender. “spender” is the

address which will spend the funds. “amount” the number of tokens to be spent.

Beware that changing an allowance with this method brings the risk that someone may use both the old and the

new allowance by unfortunate transaction ordering. One possible solution to mitigate this race condition is to first

reduce the spender's allowance to 0 and set the desired value afterwards.

Locks the contract for owner for the amount of time provided. Onlyowner can call this function.

Remove the “botwallet” from botwallet mapping,

Owner can add the wallet address which will get the all-contract balance when this function is called.

Enabled the swap and liquify. Onlyowner can call this function.

This will increase approval number of tokens to spender address. “spender” is the address whose allowance will

increase and “addedValue” are number of tokens which are going to be added in current allowance. approve

should be called when _allowances[spender] == 0. To increment allowed value is better to use this function to

avoid 2 calls (and wait until the first transaction is mined) From NIL Token. Sol.

Burn fee percent is set in this.”fee” is passed to _burnfee . Burn fee cannot be more than 20% of tx amount.

Owner can call this function for claiming other tokens. “walletaddress” is the address where all tokens are sent

and “tokenaddress” is the address of the token which will be sent from contract.

Set the new liquidity fee.

Owner can add the wallet address and can transfer all balance of contract to that wallet address.

Set the Swap Threshold Amount. Swap Threshold Amount cannot be less than 1,000,000,000

Atomically decreases the allowance granted to `spender` by the caller. This is an alternative to {approve} that

can be used as a mitigation for problems described in {IERC20-approve}. Emits an {Approval} event

indicating the updated allowance.

Requirements: `spender` cannot be the zero address. `spender` must have allowance for the caller of at least

`subtractedValue`.

Set the tax fee percent. tax fee cannot be more than 20%

Owner can add “account” address to exclude from fee.

Leaves the contract without owner. It will not be possible to call `onlyOwner` functions anymore. Can only be

called by the current owner. NOTE: Renouncing ownership will leave the contract without an owner, thereby

removing any functionality that is only available to the owner.

Set the maxtxamount. Max Tx Amount cannot be less than 10,000,000

Owner can add “account” in exclude from reward.

Owner can exclude “account” from whitelist.

Quick Stats:

Main Category Subcategory Result

Contract

Programming

Solidity version not specified Passed

Solidity version too old Passed

Integer overflow/underflow Passed

Function input parameters lack of check Passed

Function input parameters check bypass Passed

Function access control lacks management Passed

Critical operation lacks event log Passed

Human/contract checks bypass Passed

Random number generation/use vulnerability N/A

Fallback function misuse N/A

Race condition Passed

Logical vulnerability Passed

Other programming issues Passed

Code

Specification

Visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed

Use keywords/functions to be deprecated Passed

Other code specification issues Passed

Gas Optimization Assert () misuse Passed

High consumption ‘for/while’ loop Moderate

High consumption ‘storage’ storage Passed

“Out of Gas” Attack Passed

Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed

“Double Spend” Attack Passed

Overall Audit Result: Passed

Executive Summary

According to the standard audit assessment, Customer`s solidity smart contract is Well-Secured. Again, it is

recommended to perform an Extensive audit assessment to bring a more assured conclusion.

We used various tools like Mythril, Slither and Remix IDE. At the same time this finding is based on critical

analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable vulnerabilities are presented

in the Quick Stat section.

We found 0 critical, 0 high, 0 medium and 3 low level issues.

Code Quality

The NIL ERC20 Token protocol consists of one smart contract. It has other inherited contracts like Context,

IERC20, Ownable. These are compact and well written contracts. Libraries used in NIL ERC20 Token are part

of its logical algorithm. They are smart contracts which contain reusable code. Once deployed on the Blockchain

(only once), it is assigned a specific address and its properties / methods can be reused many times by other

contracts in protocol. The ARBITECH SOLUTIONS team has not provided scenario and unit test scripts, which

would help to determine the integrity of the code in an automated way.

Overall, the code is not commented. Commenting can provide rich documentation for functions, return variables

and more.

You Are Here

Documentation

As mentioned above, it’s recommended to write comments in the smart contract code, so anyone can quickly

understand the programming flow as well as complex code logic. We were given a NIL ERC20 Token smart

contract code in the form of File.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are based on well-known

industry standard open-source projects. And even core code is written well and systematically. This smart contract

does not interact with other external smart contracts.

Risk Level Description

Critical

Critical vulnerabilities are usually straightforward to

exploit and can lead to token loss etc.

High

High-level vulnerabilities are difficult to exploit;

however, they also have significant impact on smart contract execution, e.g. public

access to crucial

functions

Medium

Medium-level vulnerabilities are important to fix; however, they can’t lead to

tokens lose

Low

Low-level vulnerabilities are mostly related to

outdated, unused etc. code snippets, that can’t have

significant impact on execution

Lowest / Code Lowest-level vulnerabilities, code style violations

Style / Best and info statements can’t affect smart contract

Practice execution and can be ignored.

Audit Findings

Critical

No Critical severity vulnerabilities were found.

High

No high severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Approve

Approve the passed address to spend the specified number of tokens on behalf of msg. sender. “spender” is the

address which will spend the funds. “amount” the number of tokens to be spent.

Beware that changing an allowance with this method brings the risk that someone may use both the old and the

new allowance by unfortunate transaction ordering. One possible solution to mitigate this race condition is to first

reduce the spender's allowance to 0 and set the desired value afterwards.

(2) IncreaseAllowance ()

This will increase approval number of tokens to spender address. “spender” is the address whose allowance will

increase and “addedValue” are number of tokens which are going to be added in current allowance. approve

should be called when _allowances[spender] == 0. To increment allowed value is better to use this function to

avoid 2 calls (and wait until the first transaction is mined) .

(3) airdropArray ()

Owner add the addresses in “newholder” array and passed the number of tokens in “amounts” array. Here is a

require statement where length of “newholder” and length of “amounts” must be same. Then number of tokens

are sent to the account which owner provides.

Gas Cost is increasing exponentially with each iteration of loop.

Solution: This issue is acknowledged.

Conclusion
The Smart Contract code passed the audit successfully on the Ethereum Mainnet with some considerations to

take. There were three low severity warnings raised meaning that they should be taken into consideration. The

last change is advisable in order to provide more security to new holders. Nonetheless this is not necessary if the

holders and/or investors feel confident with the contract owners. We were given a contract code. And we have

used all possible tests based on given objects as files. So, it is good to go for production.

Since possible test cases can be unlimited for such extensive smart contract protocol, hence we provide no such

guarantee of future outcomes. We have used all the latest static tools and manual observations to cover maximum

possible test cases to scan everything. Smart contracts within the scope were manually reviewed and analyzed

with static analysis tools. Smart Contract’s high-level description of functionality was presented in Quick Stat

section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed code.

Security state of the reviewed contract is “Well-Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort. The goals of our security

audits are to improve the quality of systems we review and aim for sufficient remediation to help protect users.

The following is the methodology we use in our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error handling, protocol

and header parsing, cryptographic errors, and random number generators. We also watch for areas where more

defensive programming could reduce the risk of future mistakes and speed up future audits. Although our primary

focus is on the in-scope code, we examine dependency code and behavior when it is relevant to a particular line

of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration testing.

We look at the project's web site to get a high-level understanding of what functionality the software under review

provides. We then meet with the developers to gain an appreciation of their vision of the software. We install and

use the relevant software, exploring the user interactions and roles. While we do this, we brainstorm threat models

and attack surfaces. We read design documentation, review other audit results, search for similar projects,

examine source code dependencies, skim open issue tickets, and generally investigate details other than the

implementation.

Documenting Results:

We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing them

through successful remediation. Whenever a potential issue is discovered, we immediately create an Issue entry

for it in this document, even though we have not yet verified the feasibility and impact of the issue. This process

is conservative because we document our suspicions early even if they are later shown to not represent exploitable

vulnerabilities. We generally follow a process of first documenting the suspicion with unresolved questions, then

confirming the issue through code analysis, live experimentation, or automated tests. Code analysis is the most

tentative, and we strive to provide test code, log captures, or screenshots demonstrating our confirmation. After

this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we suggest the requirements for

remediation engineering for future releases. The mitigation and remediation recommendations should be

scrutinized by the developers and deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers

Privacy Arbitech Solutions Disclaimer

Arbitech Solutions team has analyzed this smart contract in accordance with the best industry practices at the date

of this report, in relation to: cybersecurity vulnerabilities and issues in smart contract source code, the details of

which are disclosed in this report, (Source Code); the Source Code compilation, deployment and functionality

(performing the intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no statements or warranties on

security of the code. It also cannot be considered as a sufficient assessment regarding the utility and safety of the

code, bug free status or any other statements of the contract. While we have done our best in conducting the

analysis and producing this report, it is important to note that you should not rely on this report only. We also

suggest conducting a bug bounty program to confirm the high level of security of this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the Blockchain platform. The platform, its programming language,

and other software related to the smart contract can have their own vulnerabilities that can lead to hacks.

Thus, the audit can’t guarantee explicit security of the audited smart contracts.

